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INTRODUCTION

The autofrettage process involves the application of radial forces at the
bore of a c¢ylinder with sufficient magnitude to cause permanent bore expansion.
Mechanical swage autofrettage eliminates the ultrahigh pressures required in the
conventional hydraulic method to produce the same radial forces (refs 1,2). As
a result, the residual stress distribution increases the elastic strength of the
cylinder, retards the growth of fatigue cracks at the cylinder bore, and
improves the roundness and straightness of the c¢ylinder. Work on mandrel
geometry design requiring minimum load has been reported (ref 3). However,
limited work has been done in the evaluation of the mandrel design and the swage
process by residual stress measurements. Furthermore, in the manufacturing
process, an asymmetric cylinder resulting from the boring process is generally
rejected without knowledge of the effects on residual stresses. In the present
investigation, residual stress measurements were made using the x-ray diffrac-
tion (XRO) method on a single~exposure_position-sensitive scintillation detec-
tion (PSSD) system. Our experimental results were compared with (1) predictions
made Dy assuming Tresca's yield criterion, and (2) a finite element mode! that
treats the swage autofrettage process as a ram, mandrel, and cylinder three-body

problem.

SPECIMEN PREPARATION

Figure 1 is a schematic diagram of the swaging process including the car-
bide tool. Fiqure 2 is a cross-sectional view of the eccentric tute. The
cylinder under investigation had an outside radius of 15.69 cm (6.19 in.) and an
inside bore radius of 5.69 ca (2.24 in.), giving an outside diamet.:, :*5icR
diameter (ND/1D) ratio of 2.75. Radially forged cylinders underwent a number of

finishing operations during the manufacturing process. The inner bore of the




forged cylinder was honed. Subseguently, the entire cylinder was subjected to
plastic deformation by pushing a tungsten carbide tool through the bore. The
interference between the ID of the cylinder and the load diameter of the carbide
tool, which is 2.5 percent, determines the amount of plastic deformation. The
inside radius of the cylinder was 5.69 cm (2.24 in.) before autofrettage and
5.77 em (2.27 in.) after autofrettage. The bore was rough-machined, and a
substantial portion of the tube was removed to eliminate 'end effects' during
the swage process. The wall variation due to the boring process was found at
this stage, and the cylinder was rejected. The after-processing wall thickness
was 2.93 cm (3.91 in.) at 0 degree (thickest) and 9.68 cm (3.81 in.) at 180
degrees (thinnest)}. This gave a maximum wall variation of 2.54 mm (Q0.. n,) and
an eccentricity of 1.27 mm (Q.05 in.).

A 3.81-cm (1.50-1in.) thick ring was cut from the cylinder and was machine-
and hand-polished. Electropolishing of the entire cross section of the ring was
done by the Chrome Plating Facility, Watervliiet Arsenal, Watervliiet, NY. The
polishing solution was a mixture of 50 percent sulfuric acid and 50 percent
phosphoric acid heated to 130°F; the anode was a tank lead piece; the voltage
was 7 to 8 V: the current was 2 amp/in,.?; and the cathode-to-anode distance was
10 to 15 cm (4 to 6 in.). No external agitation device was used. [t took 45
minutes to remove 5 mils froum the surface of the ring. Surface material was
removed so that sanding, machining, and oxidation effects would not influence

the residual stress measurements.

EXPERIMENTAL NETHOD
A 0-1000-A Denver X-Ray Instruments Mode! stress analyzer design was used
based on a Ruud-Barrett PSSD system. The instrumentation and calibration proce-

dures for the analyzer are described in References 4 and 5. The system utilizes




a chromium target tube, and the K-a reflects from the 211 plane of the body-
centered-cubic (BCC) steel at 26 = 156.41 degrees.

Although local multiple-exposure (sin?y) software has been developed, the
present measurements exclusively used the single-exposure method. This was due
to the large number of measurements required ta cover the 1-foot diameter sur-
face. The surface was sectioned into 32 equal parts at an 11.25-degree span
each, Data acquisition was set at three iterations at 2 seconds each. The data
presented were the average of three measurements at each peint on the surface of
the specimen. For stress distribution determination, a specimen holder with a
micrometer slide was used. Angular stress variation measurements were made by
manually rotating and positioning the specimen. Taking into account the disper-
sion in the data, the alignment error, focusing error, and effects due to
surface irregqularities, the stress values wers expected to have an error range
of ¢+ 10 to 15 Ksi. An [BM AT computer was used for data acquisition, control,
and analysis. SYMPHONY software was used for further data analyses and
graphics,

X-RAY RESIDUAL STRESS MEASUREMENTS AND PREDICTIONS
BASED ON TRESCA'S YIELD CRITERION

Koop and radial residual stresses at 50 and 100 oercent overstrain con-
ditions based on Tresca's yield criterion are shown in Figure 3. Tresca's
theory assumes th'f the thick-walled cylinder is overstrained by direct internal
pressure and that an open-end condition is present {ref 6). The results were
obtained by setting up a SYMPHONY spreadsheet program with varying 1D, 0D, and
percentage overstrain parameters. Because of the different stress conditions to

induce the oversirain in the swage method compared with the direct pressure
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method, the actual stress distribution may differ. In Figure 4, classical
theoretical stresses, including reverse yielding, are shown assuming a¢ = 0.5,
where a is the ratio of the yield stress in compression to the yield stress in
tension in a stress-strain curve for gun steels (ref 7).

The measured hoop and axial stresses versus radial distance at 0, 30, 180,
and 270 degrees are shown in parallel plots in Figure 5. The 0-degree measure-
ment position is where the ring is the thickest at 6.02 cm (2.37 in.), and the
180~-degree measurement position is where the ring is the thinnest at 5.77 cm
(2.27 in.}. The plots show that all four curves follow the same common features
as the compressive stresses observed at the bore and the tensile stresses
obsarved at the 0D. Furthermore, the Bauschinger effect is observed in all four
plots, with the 180-degree plot showing the steepest reduction of compressive
hoop residual stress near the bore and coupled reduction of tensile stress near
the Q0.

Figures 6 and 7 show hoop and axial residual stresses at 0 and 130 degrees,
respectively. Hoop stresses at 90 and 270 degrees are given in Figures 8 and 9,
respectively, The theoretical predictions assume 75 percent overstrain con-
dition and are in fairly good agreement with our experimental results. The
deviations in hoop stresses can be atiributed to reverse yielding effects, The
large ID hoop stress difference (-110 Ksi at 0 degree, -75 Xsi at 180 dagrees)
might justify the cylinder rejection, pending further experimental and theoreti-
cal verifications. Similar large deviations in hoop stresses in a cylinder have
been reported in the literature (ref 3). Radial stresses do not quite converge
to zero at the 0D0. It is interesting that the reverse yielding effects on #oop
stress are observed in all four plots. At 180 degrees, which 1S the thinnest

section of the cylinder, more pronounced effects exist.




Angular hoop stress variations at the ID and OD are shown in Figure 10.
The measurements at the ID show a peak around 180 degrees and a smaller peak
around C degree. The 0D measurements do not show pronounced peaks. The anqular
stress results are in good agreement with measurements made on a Technology for

Energy Corporation (TEC) stress analyzer (ref 9).

ABAQUS FINITE ELEMENT MODEL

A finite element model using ABAQUS code was run on a Convex C-220 super-
computer. Residual stress analysis in cylinders can be accomplished by three
different methods: (1) the use of classic closed-form equations assuming the
nlane-stress end conditions and elastic-perfectly plastic material oroperties;
(2) the finite element analysis of g cross section using improved material defi-
nition, plastic deformation at the bore during unloading, and eccentric
geometry; and (3) the full andeling of the complete problem with the mandrel
sliding through the tube. The third method adds many more practical details
including proper mandre)l geometry, moving contact, and friction at the inter-
face, and it also requires axteansive computer resources., The second method was
initially chosen to evaluate the magnitude of the eccentric bore effect.

The analysis was performed using the generalized plane-strain elements o
nodel one-half of the cross section of the tube at the time of the swage
process. A total of 154 elements was defined using 7 rows in the radial direc-
tion and 22 rows in the angular direction. The eccentric gecasters were pro-
duced by shifting the outer row of grid points relative to the inner row in
increments of 0.10, 0,21, 0.50, and 1.0 ca {0.039, 0.078, 0.197., and 0.394 in.,
respectively). The load was applied by using fixed radial displacements at the
inner row of nodes, which more closely approximates th. action of the tungsten

carbide swage mandrel that. 3 uniform hydraulic pressure. The ABAOUS materiai




stress-strain curve used was almost identical to results taken from an independ-
ent experiment for steel with about the seme yield strength (162 Ksi or 1116
Mpa) as the production tube. The material was defined using five linear
segments which fit the data in a least squares sense.

As shown in Figures 11 and 12, the finite element model predicts little
change in residual stresses due to reasonable values of eccentricity shown in
decimeters. These are nlots of hoop stress versus radius at the thickest
{O-degree) and thinnest (180-degree) cylinder sections. It can be seen that the
bore stresses are virtually the same, Farther at the qutside of the tube, the
eccentricity must be large to produce major effects. The hoop and ragial
stresses have the same features as the axperimental results shown in Figures §
through 9, except for the hoop stresses near the bore. However, the resuylts
clearly can not explain the experimenta! angular stress variation resulis saown
in Figure 10. The predicted haop and radial stresses for a symmetric cylinder
using this finite element analysis are shown in Figure 13.

The differences between the measured and caloulated hoop stresses near tre
bore have usually been attributed to the Bauschinger effect. An alternative
finite element solution to the problem, using full finite element mcdeling oOF
the whole cylinder as aentioned above, for a 105-ma cylinder is presented in
Figure 14 {ref 10). This work was a full analysis of the swage process in a
typical tube section and produced a residual hoop stress distribution auch )ike
the experimental data. This analysis was done without any reference o the
Bauschinger effect and still showed & similar shape in the hooo stress distriby-

tion.




SUMMARY

The following is a summary of our experimental and theoretical investiga-
tions of the eccentric swage autofrettaged thick-walled steel cylinder:

1. Our XRD experimental results satisfactorily characterized the hoop and
radial residual stress distributions of a swage autofrettaged cylinder.

2. Our experimental results in residual stress distribution were in fairly
good agreement with Tresca's theoretical predictions. The deviations could be
accounted for bv the Bauschinger effect. Further theoretical analysis in this
area will continue,

3. Qur ABAQUS finite element swage auytofrettage model predictions of
residual stress distribution were in general agreement with our experimental
values, except at the bore, where exnerimental hoop st-esses were less
compressive. Preliminary results using an alternative finite element analysis
can predict the same residual stress behaviors near the bore as the Bauschinger
affece.

4. Jur experimental angular distributions of hooo residual stress at the
I0 and 00 showed peaks around 0 degree (thickest) and 180 degiees {thinnest).
Our finite element mocel predicted very small variations in hoop and radial
stresses even at large eccentricities., Variations in material properties,
imperfection in the electropolishing process, and unknown effects due to the
sanufacturing processes aay be the cause.

5. Future investigations in¢lude experimental hardness determination ang
theoretical characterization of the cylinder using @ refined ¥inite olement

»odel,
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SIMPLIFIED SCHEMATICS OF
THE SWAGE PROCESS @

Initial Position
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Figure 1. Partial view of ram~-mandrel-cylinder swage
autofrettage geometry.
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GEOMETRY OF THE ECCENTRIC TUBE

ECCENTRICITY = G.05"

Figure 2. Geometry of the cross section of the eccentric tube.
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Figure 3. Theoretical hoop and radial stress distribution along

the cylinder radius predicted by assuming Tresca's
yield criterion.
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RESIDUAL STRESS

CLASSICAL RESIDUAL STRESSES

REVERSE YIELDING (alpha=@.3@
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Figure 4.
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Theoretical stress disctribution assuming Tresca's yield

distribution and including reverse yielding.
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Hoop Stress (ksi)
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Figure 11. Finite element mode) hoor stress at 0 deqree
(thickest section) with varying eccentricity.
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Figure 12. Finite element mode! houp stress at 180 degrees
{thinnest section) with varying eccentricity.
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Figure 13. ABAQUS predictions of residual stresses of an M256
symmetric cylinder using the finite element method.
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ABAQUS predictions of residual stresses of a 105-mm
symmetric cylinder using an alternative finite
element method.
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